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ABSTRACT 

A technique for reconstruction of the 2d surface velocity field from radar observations is proposed. The 
method consecutively employs two processing techniques: At the first stage raw radial velocity data are 
subject to EOF analysis, which enables to fill gaps in observations and provides estimates of the noise 
level and integral parameters characterizing small-scale variability of the sea surface circulation. These 
parameters are utilized at the second stage, when the cost function for variational interpolation is 
constructed, and the updated radial velocities are interpolated on the regular grid. 

Experiments with simulated and real data are used to assess the method's skill and compare it with 
the conventional 2d variational (2dVar) approach. It is shown that the proposed technique consistently 
improves performance of the 2dVar algorithm and becomes particularly effective when a radar stops 
operating for 1-2 days and/or a persistent gap emerges in spatial coverage of a basin by the HFR 
network. 

Published by Elsevier Ltd. 

1.  Introduction 

The technology of monitoring near-coastal currents by High 
Frequency Radars (HFRs) has been rapidly developing in the past 
decade. HFR observations are now extensively used to study near- 

shore circulation under a large variety of environmental condi- 
tions (e.g., Hisaki et al.. 2001; Breivik and Sa?tra, 2001: Sentchev 
and Yaremchuk, 2007: Chavanne et al., 2007) helping to solve 

many applied problems in the coastal regions. 
An obvious advantage of HFR observations is their availability 

in real time with nearly continuous temporal and spatial coverage 
of 10-15 min and 1-2 km, respectively. However, the back- 
scattered HFR signals suffer from to numerous distortions of 
artificial and natural origin. As a consequence, estimates of the 
along-beam sea surface velocities extracted from the Doppler 

shifts of the signals become unusable, resulting in numerous gaps 
in spatial coverage. These gaps may strongly degrade perfor- 
mance of the algorithms which extract the 2d sea surface velocity 
field from the HFR data (e.g., Kaplan and Lekien, 2007). 

A natural way to fill these gaps is to take into account space- 

time correlations between the radial velocities. Assimilation of 
the HFR data into numerical models is the most straightforward 

and general approach, which has been under development in 
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recent years (Lewis et al., 1998; Breivik and Saetra, 2001: Oke 
et al., 2002; Paduan and Shulman. 2004; Hoteit et al., 2009). The 

underlying idea is to combine dynamical constraints of a model 
with the history of dense spatio-temporal coverage by HFRs to 
produce the "best" estimate of the surface velocity at a given 

time. This approach, however, has a number of drawbacks 

hindering its implementation for real-time HFR data analysis: 
Beyond a relatively high computational cost, inverse numerical 

models have a large number of free parameters whose statistics is 
poorly known. The most problematic among those are the open 
boundary conditions, which are the major contributors to slow 
convergence of the HFR data assimilation schemes typically 
involving lengthy open boundaries. 

An alternative more simple approach can be classified as the 
2d objective analysis (01) or spline interpolation (Mclntosh. 

1990): The corresponding least-squares algorithms differ from 
each other by specifying either the covariance function or its 
inverse. In application to HFR data the 01 algorithms were 
implemented using empirical error covariances deduced from 
"normal modes" (Lipphardt et al., 2000), "open-boundary modes" 
(Kaplan and Lekien, 2007) and the data (Kim et al., 2007, 2008). A 

comparison of these methods was given by Yaremchuk and 

Sentchev (2009) who also proposed to augment the cost function 
with the terms penalizing grid-scale variability in the divergence 

and vorticity fields. 
Although the 2d 01 methods are computationally cheaper than 

the variational schemes involving dynamical information, they 
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may perform poorly in the presence of large gaps in the data 
because information on the spatial structure of the velocity field 
within the gap is implicitly drawn from the idealized covariance 
function, which looses accuracy at large distances. A certain 
improvement of the covariance models can be obtained by 
considering their truncated expansions in the empirical orthogo- 
nal functions (EOFs), a technique successfully used in Kalman 
filtering (e.g., Tipett et al., 2003) and variational data assimilation 
(Fang et al.. 2009; Yaremchuk et al.. 2009). 

The EOF-based estimates of the covariances rely upon time 
averaging and, therefore, may be successfully applied not only to 
model output but also to datasets with nearly continuous spatio- 
temporal coverage e.g., sea surface temperature (SST) or HFR 
data. Beckers and Rixen (2003) (hereinafter BR03) proposed an 
iterative EOF-based technique for filling gaps in the gridded SST 
images, which was successfully applied in Adriatic (Alvera- 
Azcarate et al., 2005). Kondrashov and Chil (2006) developed 
the method further by including time correlations into the 
procedure under the assumption of statistical stationarity of the 
observed fields. 

The goal of the present study is to design a HFR data 
interpolation algorithm capable of processing situations when 
one or more radars are out of operation. To do that we modify the 
BR03 method to make it suitable for processing HFR observations 
and combine it with the 2dVar technique. Large gaps in HFR data 
are filled using a truncated EOF decomposition of the radial 
velocity covariance matrix. Spatial correlations between the radial 
velocities are also used to estimate observational noise, assess its 
variance, and quantify the grid-scale variability of the velocity 
field. These parameters are inferred directly from observations 
and used to define the cost function weights for 2dVar mapping of 
the HFR data onto the regular grid. 

The paper is organized as follows. In the next section we 
briefly describe the methodology of 2dVar interpolation and 

estimation of the error covariance via truncated EOF expansion. 
In the same section we also describe optimization of the trunca- 
tion number and computation of the cost function weights. 
In Section 3 the method is verified using twin experiments with 
the HFR data simulated by a numerical model in a real domain 
(Monterrey Bay). Section 4 describes the results of experiments 
with the real observations off the Opal Coast of the Eastern 
English Channel. It is shown that the proposed algorithm sig- 
nificantly improves the accuracy of interpolation within the gaps 
typical for HFR observations, including the important case of a 
single operating radar. Conclusions and discussion of further 
development of the method complete the paper. 

2.  Methodology 

The technique described here employs advanced statistical 
and variational methods to improve the accuracy of interpolation 
of HFR observations of surface currents. The underlying idea is to 
first retrieve spatial correlations between the radial velocities 
from the data, then use the obtained statistics to fill gaps in 
observations (interpolate in data space) and consistently define 
the cost function weights (inverse of the velocity error covar- 
iance) for 2dVar interpolation. 

The proposed processing technique consists of four consecu- 
tive steps: (a) EOF analysis of the radial velocities: (b) Signal/noise 
separation and computation of the cost function weights: 
(c) Filling gaps in observations; (d) 2dVar interpolation of the 
preprocessed dataset. 

2.1.  Variational interpolation of the radial velocities 

Consider an oceanic domain Q partly bounded by the coastline 
dQ0 where HFRs are located (Fig. 1). Projections vj of the surface 
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Fig. 1. Evolution of the reconstructed surface velocity field in the Monterrey Bay. Upper left panel shows distribution of the observation points. Solid line indicates the 
boundary of the interpolation domain Q. Cross-validation points are shown by asterisks. 
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velocity field vNx.y.f") on the radar beam directions rk are 
observed at times r" at a discrete set of points x*. k= 1....JC located 
along the beams (upper left panel in Fig. 1). Our goal is to obtain 
gridded estimates v" of v'lx.y.r") given vjj. 

The number M of points of the regular grid defines the number 
of unknown values of the interpolated function to be determined 
from K observations at a given time r". In the particular case of the 
HFR data the interpolation grid step is often chosen such that 
M ~ K/2 because two velocity components have to be defined at a 
regular grid point, whereas only one component is measured at 
an observation point. 

A standard approach to regularizing interpolation problems is 
penalizing small-scale variability (enforcing smoothness) of the 
interpolated fields (Mclntosh, 1990). The latter is usually repre- 
sented by the action of the Laplacian on the field subject to 
interpolation. In application to the HFR data Yaremchuk and 
Sentchev (2009) have shown that it is beneficial to enforce 
smoothness in the divergence <\\w = dxu+dyv and vorticity 
curlv = dxV-dyU patterns. This approach facilitates extraction 
large-scale components of these physically important features of 
circulation. In the present study we utilize similar technique. In 
addition to the terms proportional to (Adiw)2 and (Acurlv)2 we 
also enforce smoothness in the velocity field v. 

At a given time the velocity field v is obtained through the 
constrained minimization of the quadratic cost function: 

J=jK^2«i,2VPkV)-Tk-Vkf 

+ 1A /[vvd<Adivv>2 + vvc<Acurlv»2 + vv''<Av»2] dii 

-min»|v«io0,=.o (It 

Here K is the number of observations. A is the area of the 
interpolation domain Q and Pk is the local interpolation operator 
which projects the unknown velocity vectors onto the kth 
observation point from the apexes of the grid cell, enveloping 
that point. Factors <Tk

2,W'',Wc and W are the inverse error 
variances of the corresponding squared quantities, so that J could 
be treated as the argument of the Gaussian pdf V(v) defined on 
the 2 M-dimensional space of the gridded velocity fields v: 
P<v)~exp[-/]. 

In contrast to the previous studies (Kaplan and Lekien, 2007; 
Yaremchuk and Sentchev. 2009), where regularization factors or 
their analogues were determined empirically, here we take the 
advantage of the rich temporal statistics provided by the HFRs 
and obtain the cost function weights from the statistical analysis 
of the data. 

2.2.  Signal/noise separation 

Spectral decomposition provides the following representation 
of the covariance matrix: 

C=UAUJ 

where U is a rectangular matrix whose columns are the eigen- 
vectors e* (empirical orthogonal functions, EOFs) of C correspond- 
ing to the eigenvalues /.k. and /I = diag|/k|. The eigenvalues 
quantify time variation of the spatial patterns in the radial 
velocity distributions described by the corresponding EOFs. 

Having the EOF decomposition of the data at hand, the noise 
level could be estimated using the cross-validation (CV) technique 
(e.g., Beckers and Rixen, 2003). The technique provides a certain 
number of EOFs (modes) Kr. which describe the portion of 
variability of the radial velocities, that is well-resolved by the 
HFRs. The rest of the modes ek. k>KT are attributed to noise. 

whose spatial variability cannot be determined with statistical 
confidence. 

Technically. Kr is computed as the number of modes which 
provide a minimum for the interpolation error at the randomly 
chosen set toc of CV points (Fig. 1). These points are temporarily 
removed from observations and constitute a small portion of the 
dataset to minimize their impact on the result of covariance 
estimate. 

Note that locations of the CV points should change in time in 
order to keep the dimension of the covariance matrix C equal 
to K. This requirement may result in a certain distortion of the 
covariance estimate because, in the presence of the artificial 
gaps (introduced by CV points), the number of snapshots in 
the time-averaging operation depends on the pairs of points 
being correlated. In such case the covariance estimate may 
not be even positive-definite (e.g.. von Storch and Zwiers, 2002) 
but with sufficiently small number of CV points one may 
hope this effect will be negligible. Technical details of mini- 
mizing the interpolation error with respect to Kr are given 
in Sections 2.3 and 3.2. 

With the optimal cutoff number of modes K„ the covariance 
matrix C can be decomposed into the well-resolved C, and 
unresolved (noisy) C„ constituents: 

C=Cr+CnmUrArUj+UnAnUl (2, 

where Ur is the K, x K matrix, whose columns are the first (well- 
resolved) eigenvectors. /lr = diag|/.k|. k = 1, . ,K,: the eigenvec- 
tors in the columns of the {K-Kr) x K matrix U„ are attributed to 
noise, and A„ =diag|/.k|, k = K, + \ K. 

The noise level v is estimated as 

-BSrT- 
K K 

Y. MY,* 
= K, i 1        1=1 

(3) 

whereas observation error variances ct\, k=\ If are repre- 
sented by the diagonal elements of the matrix C„ = U„Anlf„. 

The diagonal elements of C are also used to estimate the 
variances <r2. a\ and a\ of the respective fields Av, Acurlv and 
Adiw. In the present study we assume that the corresponding 
inverse variances IV. W and W* do not vary in horizontal and 
compute them as the reciprocals of <T

2
, IT

2
 and a\. The values of 

ff2, of and a\ are obtained through the following formulas 

2_ 2TrC       2_   2TrC 2TrC 

Kdx*L2
d 

,4, 

where Ax is the grid step of the interpolation grid and l*. Ld are the 
scales of variability of the curl and divergence fields inferred from 
statistical analysis of the data. 

2.3.  Interpolation in the data space 

The final step in preparing to interpolate is filling gaps in 
observations. Although the cost function (1) does not contain 
spatial correlations between the radial velocities, this information 
could be taken into account at the preliminary stage by the gap- 
filling technique proposed by Beckers and Rixen (2003) for the 
SST data. Below we give a brief description of the method with an 
emphasis on the difference in its application to HFR observations. 

To fill a gap containing points x, in a subdomain to c O. the 
radial velocities v(x,) observed outside the gap (x,efl\<u) are 
expanded in Kr "resolved" eigenfunctions e* of C: 

find otk:   £    v(Xj)- ]T 0Lke"(x,) 
X, .   I/lU   , 

(5) 
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and  the expansion coefficients at are used  to obtain  radial 
velocities within the gap: 

K, 

v(x, e co) = ^2 "k^Ci e f°) (6) 
k = 1 

Note that a gap may also include points from the CV set coc. 
After this the EOF expansion is iteratively improved: a set of 

EOFs |efm)| on the mth iteration is computed using the covariance 
estimate C(ml emerging from the "dataset" whose gaps are already 
filled with the help of the previous EOFs (e*m „), then these new 
EOFs [e^m]] are employed to fill the gaps again. The process 
terminates when the relative reduction of the mean interpolation 
error 

^=E vc(x,)- ]T °W< 
k= 1 

,(X|) (7) 

computed over the CV set (oc becomes smaller than the machine 
precision. The difference of our approach from BR03 is the 
following: 

(a) at the first iteration we use the direct estimate of C (which 
may not necessarily have a positive definite spectrum) derived 
from the gappy dataset (BR03 algorithm fills the gaps with zeroes 
to obtain a positively definite estimate of the covariance matrix). 
The reason is that distortion of the spectrum by gaps in HFR data 
usually occurs at the high-wavenumber part of the spectrum, 
which is not used by the gap-filling process anyway, whereas the 
direct estimate of C gives somewhat better approximation of the 
leading eigenfunctions. Of course, a lot depends on the spatio- 
temporal structure of the gaps, but our experience with HFR data 
shows that this property is well kept for a typical set of HFR 
observations: we never encountered negative eigenvalues in 
neither simulated, nor real data; 

(b) interpolation within the gaps is performed using (5) and 
(6), i.e. projection on the eigenvectors is performed outside the 
gaps: interpolated values within the gap areas are never used to 
compute projections of the data on the new eigenvectors. As a 
consequence, expansion coefficients a, cannot be computed 
analytically via the inner product in the data space and the 
minimization problem (5) has to be solved numerically. 

These modifications provide faster convergence of the iterative 
algorithm for the computation of the final set of EOFs (Section 3.2.1). 

To summarize, the proposed method consists of four major steps: 

1. EOF decomposition of the covariance matrix between the 
radial velocities. 

2. Signal/noise separation and computation of the cost function 
weights. 

3. Filling gaps in observations. 
4. 2dVar interpolation of the preprocessed data set. 

To assess the method's performance, we conducted twin-data 
experiments with simulated HFR data (Section 3) and real 
observations off the Opal Coast in northern France (Section 4). 

3. Twin-data experiments 

3.1. Setting 

Setting of the twin-data experiments was chosen to mimic real 
observations conducted in the Monterrey Bay in summer of 2003 
(Shulman and Paduan. 2009). 

The "true" currents v' were extracted from the 12.5-day run of 
the NCOM model forced by COAMPS (Hodur et al., 2002) winds. 
The  model was  configured  on a  curvilinear orthogonal  grid 

(Paduan and Shulman, 2004) with a typical step of 1.8 km. Surface 
currents were sampled every hour along the beams of three 
radars which probed the radial components of the model surface 
velocity at 386,407 and 349 points, respectively (Fig. 1, upper left 
panel). Therefore the dimension of the data space was K=1142. 
The total number of the gridpoints where velocity vectors were 
reconstructed was M=560, so the number of unknowns 
2M=1120 was approximately equal to the number of 
observations. 

Radial velocities vk "observed" at points xk were defined by 
adding white noise w to projections of the model currents v" on 
the beam directions rk: 

vk = (Pkv'  rk) + vVw. (8. 

Here V=0.12 m/s is the typical magnitude of Pkv' rk and v is the 
scalar parameter whose reciprocal has the meaning of signal/ 
noise ratio. Three values of v (0, 0.1, and 0.3) were tested within 
each of six major series of twin-data experiments. Each series was 
characterized by specific structure of the artificial gaps intro- 
duced into the simulated dataset to assess the benefits of the gap- 
filling technique. These simulated data sets were the following: 

(0) Without the gaps. 
(a) With randomly distributed 1-point gaps (data loss y = 13.5%). 
(b) With gaps, generated by obstacles, moving across the domain 

(Fig. 2): Each obstacle (ship) spoils data along three beams, 
whose intersection point coincides with the ship's position. 
We simulated back-and -forth motion of three ships, which 
effectively removed 6.9% of the data points from observations. 

(c) With the gap created by discarding all observation points in 
the rectangular region (Fig. 2) for 1 day. This gap removed 28% 
of the data on August 10-11 and approximately y = 2% of the 
data overall. 

(d) With gaps generated by switching off for 12 h radars 2,3 on 
August 4, radar 1 on August 8 and radars 1,3 on August 12 
(Fig. 2. y = 6.3%). 

(e) With all the above mentioned gaps superimposed (y = 28.2%) 

37 1 

37 0 

368 

367 

366 

365 

in 1222 1220 
Longitude. W 

1218 

Fig. 2. Setting or the gap simulation experiments: Cray shading shows data 
acquisition areas of the radars in the presence of a simulated ship (case b) moving 
across the Monterrey Bay. Area within the rectangle shows the boundary of the 
data-free region in case c. Numbers enumerate radars switched off in case d. 
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To assess che effect of the preliminary interpolation in the data 
space (step 3, Section 2.3), we also compared the results of 2dVar 
interpolation of the raw data (with the gaps) and the results of 
2dVar with the gaps filled. 

The quality of interpolation was monitored by three para- 
meters: Velocity error e„ was defined as the mean absolute 
difference between the true v1 and interpolated v currents 
normalized by the typical magnitude of v": ev = 
< |v'—v| >/< |v*| >. where angular brackets denote space-time 
averaging over the interpolation grid. Similar expressions were 
used to assess the interpolation qualities ed, ec of the divergence 
and vorticity fields: 

ed=<|div(V-v)|>/<|diw'|>;    ec= <|curl(vt-v)|>/<|curlv'|> 

3.2.  Results 

3.2.1.   Signal/noise separation 
Without the gaps there are N = Kn = 1142 x 301 =343.742 

observation points, where n is the number of hourly timesteps 
in the 12.5 day time window. The CV set was specified by 
randomly removing 10-13 points on each time layer (Fig. 1) with 
the total number of CV points Ncv=3490. 

The cutoff number Kr was determined for the noise levels (v = 
0, 0.1 and 0.3) by minimizing the interpolation error (7). To 
examine sensitivity of Kr to changes in the CV set a>c we varied o)c 

by specifying different seed values for the random generator of 
the CV points' locations, keeping the ratio NcIN close to 1%. These 
experiments have shown very weak dependence of Kr on <oc. 

Left panel in Fig. 3 shows calculations of Kr for the experiments 
with v = 0.1 and 0.3: for observations specified by (8) the S/N 
separation number is 38 for v = 0.1 and 20 for v = 0.3. The 
corresponding estimates of the noise level (Eq. (3)) are 0.093 
and 0.29 in very good agreement with the true values. For the 
case of perfect observations (v = 0) Kr appeared to be close to N as 
the dependence c(m) flattened out at large m and did not show 
any distinct minimum. 

To speed up convergence of the BR03 iterative process we 
made two modifications discussed in Section 2.3. Fig. 3 (right 
panel) shows their effect for a particular case of m= 10 modes and 
v = 0.3: The gray curve was obtained when the first guess 
covariance was estimated without filling the CV gaps with zeroes 
but with a, in (5) computed through summation over Q with 
v(o>c) = 0. The solid black curve in the same panel was obtained in 

a similar way except for summation in (5) was done over Q\a>c 

(i.e. filled CV points were not taken into account). Similar 
improvement in convergence was observed for other values of v 
and m with artificial gaps also included. 

Fig. 4 demonstrates the impact of gaps on the covariance 
matrix spectrum and the performance of the gap-filling procedure 
for the "realistic" case e (28.2% loss of HFR data, all types of gaps 
are present). It is seen that the gaps have little impact on the ten 
leading eigenmodes of the spectrum. This could be explained by 
the fact that these modes are associated with the largest spatial 
scales, whereas the examined gaps tend to have stronger distort- 
ing effect on the small (case a) and intermediate (b.cd) scales of 
variability. 

The gap-filling procedure appears to be rather effective as it 
dramatically improves the spectral shapes in the region 
10 < m < Kr: spectra after gap-filling closely follow the observed 
ones for both values of noise level. Moreover, it appears that the 
gap-filling technique is able to extract useful signal from noisy 
observations as the gap-filled curves appear to follow the true 
spectrum more closely than the observed (without the gaps) 
curve in the vicinity of Kr (v = 0.3). 

3.2.2.   Cost function weights 
Spatial variability of the error variances ak retrieved from the 

gappy data was not smooth enough for adequate mapping. We 
examined dependence of ak on the distance from a radar. Fig. 5 
shows a typical curve computed for the case v = 0.3, y = 28.2"/... 
Errors increase from 2 to 4 cm/s in the ranges between 5 and 
35 km and then more sharply to 6 cm/s between 35 and 45 km. 
This behavior can be explained by a certain loss of accuracy of the 
gap-filling technique at larger distances, where the density of 
observation points is getting smaller. 

One may think of a possibility to take into account off-diagonal 
elements of the error covariance matrix C„ by specifying the data 
misfit weights in Eq. (1) in the full matrix form C~' =U„A~*lfn 

rather than in its diagonal approximation. Experiments with this 
formulation of the cost function have shown, however, that 
diagonal approximation C~' as diag<r„ 2 provides a better and more 
stable fit to the "truth". A possible reason is that the off-diagonal 
elements are obtained from the limited number of samples with 
less statistical confidence than the diagonal ones. Indeed, in a 
series of additional experiments the off-diagonal elements exhib- 
ited strong dependence on the structure of the gaps, whereas 
their   spatial   variation   appeared   too   noisy   even   at   small 
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Fig. 4. Normalized spectra of the NCOM radial velocities taken directly from the model (black dashed curve), same velocities contaminated by noise (eq. (10). solid black 
curve), with gaps superimposed (solid gray) and the gaps removed (dashed gray). Shaded region on the right denotes the null space of the covariance matrix estimated 
with full (fV=30O) time series. Spectral components with m > N emerge as a result of uneven lengths of the time series in the estimate of the covariance matrix 
elements—without gaps there are K = 1142 time series with N elements each and spectral density is zero at m > N for continuous observations. Note that presence of the 
gaps artificially elevates the relative spectral density at m > 10. 

Table I 
Dependence of the interpolated field parameters e,.. e,, and ea on the structure of 
the gaps in HFR observations for v = 0.3. The results of standard 2dVar (without 
filling the gaps) and 2dVar with the gaps filled are shown, respectively, in the left 
and right columns of the table cells. 

20 30 
Range, km 

Fig. S. Mean radial velocity error variance IT(V) as a function of the distance from 
a radar. 

separations between the data points, resulting in the overall loss 
of robustness of the estimate of C~'. 

The efficiency of the approximation (4) of the regularization 
weights W = a~2, Wc = <T~2 and Wd = ad

2 was checked in a 
series of experiments, where the weights were varied to obtain 
the best fit to the "true" fields. These computations have shown 
that such "optimized" weights never departed more than 15% 
from the respective values obtained with Eq. (4), i.e. without the 
exact knowledge of the true velocity. At the same time interpola- 
tion errors e,„ ec and ed were only 5-8% larger than the "opti- 
mized" ones, showing feasibility of the estimate (4). 

In the following sections we consider algorithm's performance 
in more detail, paying special attention to its skill in the presence 
of various types of gaps. 

3.2.3.  Random gaps 
Table 1 compares the proposed interpolation algorithm with 

the 2dVar method (Yaremchuk and Sentchev, 2009). A robust 1-2% 

case )'(*) tv ed e( 

0 0.0 _ 0.251 0.652 _ 0.537 
,i 13.5 0.260 0.252 0.665 0.659 0.551 0.542 
b 6.9 0.256 0.251 0.662 0.654 0.545 0.540 
c 2.0 0.254 0.251 0.660 0.655 0.545 0.539 
d 6.3 0.280 0.258 0.677 0.661 0.564 0.542 
abed 27.9 0.311 0.274 0.703 0.679 0.589 0.558 

improvement of the interpolation error is observed in the velocity, 
divergence and vorticity fields for case a (randomly distributed 
1-point gaps. Section 3.1). The improvement is significantly lower 
than the percentage of data loss (13.5%). primarily because filling 
random 1-point gaps affects information content on the grid scale 
which is poorly resolved anyway. Besides, data absence is largely 
compensated by observations in the points located in the immedi- 
ate vicinity of the 1-point gaps at distances often smaller than the 
grid step. These neighboring points compensate missing data and 
provide the 2dVar interpolation with enough information on the 
larger-scale variability. Also note that the surface velocity field is 
recovered in most cases with a better accuracy e,, than the noise 
level v = 0.3. 

3.2.4. Moving ships 
Moving ships (case b) spoil 6.9% of the entire set of 343,742 

data points. Relative improvement of the 2dVar interpolation 
(line 2 in Table 1) is somewhat smaller than for the case of 
completely random gaps: Velocity field is better by 1.1% whereas 
vorticity and divergence fields show 0.9 and 1.0% improvements, 
respectively. Nevertheless, the proposed algorithm appears to be 
pretty robust with respect to this type of gaps as well. 

3.2.5. Single gap 
Much more difficulties emerge when a gap occupies a sig- 

nificant portion of the interpolation domain, as in case (c) (Fig. 2). 
To better illustrate the benefits of the gap-filling technique, we 
placed the gap at the location of an eddy-like structure seen in the 
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mouth of the Monterrey Bay around the 10th of August. 2003 
(Fig. 6, left panel). Without interpolation, this eddy is not 
reproduced by the 2dVar technique (Fig. 6, right panel), simply 
because there is no information on the eddy in the velocity field, 
surrounding the gap. On the contrary, if the spatially inhomoge- 
neous correlations between the radial velocities are taken into 
account, a certain portion of this eddy emerges from the prior 
statistical information, providing a much better skill to the 2dVar 
algorithm (Fig. 6, middle panel). 

Table 1 does not give full impression of the improvement, 
because error data are averaged over the whole observation 
period (12.5 days), whereas the datasets in case (c) differ only 
on the 10-11th of August. If averaging is performed over the time 
period containing the gap (from 12PST 10.08.2003 to 12PST 
11.08.2003) then the advantage is obvious: e,, is reduced from 
0.49 to 0.32 (33% reduction). Similar error reductions are also 
observed for the vorticity and divergence fields (28 and 37%, 
respectively). 

3.2.6.  Switching off the radars 
A common reason for low data return of a HFR system is 

malfunction of one or more radars. We simulated this kind of 
situation by switching off both northern radars for half a day on 
4th of August, southern radar on 8th and two southern radars on 
12th. The strongest reduction of the interpolation errors occurred 

on 12th of August, when the reconstructed (true) currents were 
generally perpendicular to the beams of the only operating radar. 
In that case the velocity error er, reduced 64% (from 0.84 to 0.34) 
with 66% of the missing data being filled. 

Velocity distributions show that 2dVar interpolation tends to 
align velocities along the beams of the only working radar (right 
panel in Fig. 7), producing rather unrealistic pattern (compare 
with the left panel in the same figure). After filling of the missing 
data at the southern radars, the skill of the 2dVar algorithm is 
significantly improved. 

Advantage of the preliminary gap-filling is less visible in the 
case when only one of the three radars is switched off. This is 
because the major improvement occurs in the subregions covered 
by a single radar: When radar 1 in Fig. 2 was switched off on 8th 
of August, such regions emerged on the periphery of the domain 
and provided the major contribution to the 25% increase in e,. 
(computed by averaging over the 12 h period when the radar was 
switched off). Filling of the radar 1 data reduced e,. by 15% with 
similar reductions observed for the divergence and vorticity 
errors. 

3.2.7.  Combined gaps 
Finally, all the gaps were combined together to obtain a 

"realistic" HFR record, characterized by 72% of the data 
return. Fig. 8 gives an overall comparison between the methods 

371 

122.4        122.2        122.0       121.8       122.4       1222       1220       1218        122.4       122.2       1220       121.8 

Fig. a The "true" velocity field (left panel) and velocity fields reconstructed by 2dVar with preliminary filling the rectangular gap (middle panel I and without (right panel). 

122.4 1222 1220 1218       122.4 122.2 122.0 121 8 1224 122.2 122 0 121.8 

Fig. 7. The "true" velocity field (left panel) and velocity fields reconstructed by 2dVar with preliminary filling the gaps caused by switching off two southern radars 
(middle panel) and without filling (right panel). 



M. Yaremchuk, A. Sentchev / Continental Shelf Research 31 (2011 j 758-768 765 

\=0 3. data retutn=71.8% 

Fig. 8. Velocity interpolation error e,, for the "perfect" dataset (without gaps, red line), for the gappy data with (black) and without (blue) preliminary EOF-based 
interpolation of the radial data. Shaded area denotes the part of data occupied by the gaps. Particularly severe losses of data are observed during simulated radar 
malfunctions (4. 8 and 12 of August) and on August llth, when "observations" were removed from a large region shown in Fig. 2. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

in terms of e,.. ed and ec. It is obvious that EOF-based gap-filling of 
the radial data is particularly advantageous during a "severe data 
loss" events caused by either malfunction of a radar (8.8) or two 
(4.8, 12.8); or by data loss in a region, whose size is considerably 
larger than the grid step (11.8). 

Beyond these periods, when only 1-point and ship-generated 
gaps are present, the proposed algorithm still has some (1-3*) 
advantage over the 2dVar in terms of e„, ea and ec (see Table 1 and 
numbers in Fig. 8). 

It is also noteworthy that the proposed technique allows to 
retrieve the sea surface state with an accuracy e,, = 0.27 better 
than the noise level v = 0.3 (Fig. 8) even in the case of 28% loss of 
observations. The conventional 2dVar technique (e,, = 0.31. Fig. 8) 
demonstrates somewhat lower skill, primarily because of much 
poorer performance during the heavy data loss periods. 

4.  Real data experiments 

To test the algorithm with real data, we processed HFR 
observations obtained in the course of the ERMANO experiment 
off the Opal coast of the Pas de Calais in northern France. 

4.1.  The data 

In May-June 2003. two HF radars were deployed to monitor 
surface currents: one radar was located on the Cape Cris Nez 
(CGN) and the other one was 12 km farther south, at Wimereux 
(WMX, Fig. 9). The entire 35-day record from 0.00 CET 01.05.2003 
to 23.40 CET 04.06.2003 was used for testing. Surface currents 
were sampled every 20 min at 10 azimuthal resolution defined 
by the beam width. The radial velocity data were binned along the 
beams at 1.8 km resolution. Grid cells with less than 75% data 
returns were excluded from consideration, constraining the 
interpolation domain to the ranges less than 20 km (Sentchev 
and Yaremchuk, 2007) and the total number of "good" observa- 
tion points to K=203. Overall, the analyzed records were char- 
acterized by 87% of data return (68,059 of 511,560 observations 
were discarded). Approximately 10% of the missing radial velo- 
cities were due to data acquisition problems at the Wimereux 
radar on May 3 (3 h) and May 21-22 (21 h). The instrumental 
accuracy of the measurements was 5 cm/s. 

Regional velocity pattern (Fig. 9) is dominated by the M2 tidal 
constituent which contributes 77% to the total velocity variation 
in the area. The maximum velocities reach 1.8 m/s with the 
typical magnitude of the velocity vector of 0.52 m/s. Observed 
radial velocities had the rms amplitude of t:r = 0.34 m/s. 

50.95 

50 75 

1.25 1.65 

Longitude (deg E) 

Fig. 9. Surface velocity al I2.20CMT 24.05 2007 in ihe ERMANO study area. 
Contours show the bathymetry in meters. Cray dots indicate locations of the 
surface velocity measurements by two radars (shown by circles). 

To estimate observational noise level and the quality of 
interpolation, a set of CV points u>c was removed from the data. 
Every 20 min 8-12 locations were randomly selected, and radial 
velocities observed at these points were extracted from the 
dataset. In total. 24.097 (4.7%) observations were removed. 

The quality of interpolation was estimated as the mean 
absolute difference between the values of the interpolated velo- 
city at the CV points and the radial velocities measured at these 
points: 

<?;= <lV|,-P*V-Ifc|> 

Here index k enumerates the CV points and angular brackets 
denote averaging over we. The total number of gaps in observa- 
tions (including the CV points) was 92.156 (18%). 

42. Results 

Similar to twin-data experiments, the noise level was deter- 
mined by minimizing the CV interpolation error (7). Dependencies 
of the normalized interpolation errors e and e'v on the number of 
modes k demonstrated distinct minima at k = 33-35 (Fig. 10). We 
selected N,= 33 as the noise cutoff number. The observational 
noise level computed through Eq. (3) was close to 0.15. or 5.1 cm/s, 
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in a good correspondence with the above estimate of the instru- 
mental error. 

In experiments with real data the true velocity field is 
unavailable, so the quality of interpolation of the curl and 
divergence fields ec, ed cannot be assessed. The interpolation 
quality was monitored by a single parameter e; estimated at 
the CV points. Fig. 11 shows time evolution of e'v for two cases: 
with and without filling the gaps. It is seen that the preliminary 
gap-filling technique is able to reduce the time-averaged relative 
interpolation error to 0.16 (5.5 cm/s), a value very close to the 
observational noise level. On the contrary, the mean value of e; 
without preliminary gap-filling appears more than two times 
higher (0.35) indicating a significant benefit of combining 2dVar 
interpolation with the EOF analysis. 

The advantage of the gap-filling technique is most vividly seen 
during the periods when the Wimereux radar was not working 
(see increase in the data loss to 45-50% on May 3 and 21-22 
in Fig. 11). Fig. 12 shows tidal ellipses obtained by averaging of 
the interpolated currents over the 24-hour period from 12.00 CET 
21.05 to 12.00 CET 22.05 for the cases with (a) and without 
(b) preliminary gap-filling. The pattern in Fig. 12a appears to be 
completely unrealistic as the major axes of the ellipses tend to 
align along the beams of the only operating radar in Cape Gris 
Nez. Fig. 12b is apparently more close to reality since the spatial 
distribution of the ellipses is much more similar to the one 
obtained by averaging the currents over the two 24-hour periods 
immediately before and immediately after the gap (from 12.00 
20.05 to 12.00 21.05 and from 9.00 22.05 to 9.00 23.05): During 
these two periods both radars were in full operation with the 
average data return of approximately 9% (Figs. 11, 12c). 

2      3    4  5     7     10    15 2025  35    50   70 100 
number of modes 

Fig. 10. Normalized interpolation errors r. and e,, as functions of the number of 
modes. The curves are normalized by the observed radial velocity variance r.r. 

Robustness of the noise separation and gap-filling algorithms 
was investigated in the similar way as in twin-data experiments: 
the CV subset wc was varied in size from 2 to 5% of the total 
number of observations by changing the parameters of the 
random generator of the CV points. The resulting values of Kr 

were found to vary between 32 and 36 (v= 16-13%) while the 
respective values of e'v were even more stable varying in the range 
of 0.158-0.164. 

We also studied the effect of the length of time averaging T on 
the quality of interpolation: The averaging interval was centered 
at 23.20 GMT 21.05.2003 (middle of the gap in Fig. 11) and varied 
between 3 and 20 days. Results of these experiments have shown 
that e; comes close to the saturation (noise) level when T>6 
days, i.e. approximately 12 periods of the dominant wave (M2) 
were necessary to provide statistically robust cross-correlations 
between the radial velocities of two radars. 

5.  Discussion and conclusions 

Observations of surface currents by high frequency radars are 
disrupted by environmental factors causing numerous gaps in the 
data. The number of gaps increases with distance and result in the 
loss of accuracy at far ranges. Moreover, since continuous opera- 
tion of at least two radars is crucial for successful reconstruction 
of the velocity field, even a short-term radar malfunction may 
interrupt monitoring of the surface velocity and result in the 
dramatic loss of accuracy in prediction of particle trajectories that 
is important in many practical applications. 

In the present study we combined the EOF analysis with the 
2dVar interpolation technique to successfully process occasional 
single-radar coverage events and improve the overall quality of 
monitoring of sea surface currents by the HF radars. EOF analysis 
of the radial velocities provides (a) statistically rigorous estima- 
tion of the weights for the 2dVar algorithm, and (b)a set of spatial 
patterns (EOFs) capable to fill large gaps in the data caused by 
radar malfunctions. Our approach takes the advantage of the 
frequent time sampling by the HFRs and employs observation 
history to estimate the leading modes of variability of the radial 
velocities. Similar to SST analysis (Beckers and Rixen, 2003: 
Alvera-Azcarate et al.. 2005), these modes are used to fill the 
gaps in HFR observations, which frequently occur in practice. 
Numerical experiments with simulated and real data have shown 
that preliminary gap-filling is extremely beneficial during occa- 
sional periods of heavy data loss associated with radar malfunc- 
tioning: With the proposed technique, the interpolation errors 
during these periods are typically reduced 1.5-2 times providing 
much more realistic velocity distributions (Figs. 6, 7, 12). 

The interpolation method can be summarized as a four-step 
procedure: EOF analysis of the radial velocities: estimation of the 
noise and the cost function weights; filling gaps in observations, 
and finally, retrieving of the velocity vectors from the filled 
dataset. 

95     115     13.5     155     175     195     21 5     235    25 5     27 5     295     315      28     .482003 

Fig. 11. Radial velocity errors at the cross-validation points for 2dVar interpolation with (bold curve) and without preliminary gap-filling. Errors are normalized by the 
observed radial velocity variance c, and smoothed with the 2-hour running mean. Shading indicates the relative amount of gaps in the data. 
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was dominated by tidal motions, and we have shown that 
averaging over more than 12 periods of the dominant wave is 
adequate. In the near-coastal areas with weak tidal currents (e.g., 
lakes, semi-enclosed seas) the time interval should be long 
enough to statistically capture the major events typical for 
regional sea surface dynamics. Our ongoing experience with 
multi-year HFR observations in the Gulf of Lyon (Forget et al., 
2008) shows that the presented method also works well in a 
region whose dynamics is quite different from the tidally domi- 
nated regime considered here: circulation in the Gulf is charac- 
terized by sporadic mistral wind-driven events on the background 
of strong mesoscale activity and relatively weak tidal/inertial 
oscillations. It was found that 4-month moving average was 
adequate enough to apply the technique successfully. 

The proposed method may not be applicable to short HFR 
records characterized by 1-2 brief and strong "events" occurring 
during the observation period. In that case the cross-validation 
technique may not properly work and the S/N separation model 
may be invalid because noise statistics becomes far from Gaussian. 

From the computational point of view, the proposed algorithm 
is not expensive: the most time-consuming part is calculation of 
the S/N separation number Kr which requires multiple interpola- 
tion runs in the data space (Figs. 3, 10). In our case these 
computations consumed only several minutes of CPU time of a 
single 2.66GHz processor. For larger grids (K,M~ 104) the 
required CPU time may be close to an hour, but can be easily 
reduced using multiple processors because the time-consuming 
computation of the curve in the left panel of Fig. 3 is readily 
parallelized in the number of modes. Besides, since Kr is unlikely 
to change in time significantly, this lengthy computation have to 
be executed only once: a search for a minimum in Fig. 3, 10 could 
be done more effectively when a good guess for K, is available 
from the first computation. 

In view of the above, the technique can be applied in near-real 
time with only minor modification. In this case error statistics is 
estimated by averaging over the period preceding the moment of 
data acquisition and then updated by replacing the oldest data in 
the time series by the new readings. Similar updates are made to 
other quantities described in Section 2.2. However, since rhe 
number of samples used for statistical estimation is fairly large, 
the updates can be made once in a while, e.g., when contribution 
cn of new data to the time series exceeds 1-2%. This "real-time" 
approach has been tested with the HFR observations in the Gulf of 
Lyon (Forget et al., 2008). Preliminary results show that time- 
averaged interpolation error ej is reduced significantly when the 
variational method is combined with the gap-filling technique, 
but this reduction is not sensitive to the frequency of updates 
when c„ < 2.5% (every 3 days). 

Presented material and preliminary results with multi-year 
HFR observations do suggest that the proposed technique may be 
useful in processing a large variety of HFR datasets with sig- 
nificant loss of data. 
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